Muscular system

MOVE ME!

MUSCLES

Day 1 Nov 13 and 16

TYPES OF MUSCLES, STRUCTURE AND FUNCTIONS.

FUNCTIONS of MUSCLE

Movement

- Maintains posture
- Stabilize joints
- Generates heat
 - Byproduct of muscular contraction

Three Types of Muscle

- Skeletal
 - Associated with bones
- Cardiac
 - Makes your heart
- Smooth
 - Tubular, common in intestines, blood vessels

Three muscle types

Three types at the cellular level

SKELETAL

CARDIAC

SMOOTH

*ADAM.

CARDIAC MUSCLE

Only found in your heart

- Striated (striped)
- Involuntary (can't control it)
- Multinucleated

Cardiac Muscle

SMOOTH MUSCLE

- Involuntary and
- Not striated (striped)
- Not multinucleated
- Makes up vessels, intestines, bladder, stomach
 - Moves "stuff" through the body
- Slow smooth contractions

Smooth muscle

Smooth muscle cells

SKELETAL MUSCLE

- Voluntary
- Striated (striped)
- Multinucleated
- Fast strong contractions

- Human body contains over 400 skeletal muscles
 - 40-50% of total body weight

Longest muscle - sartorius

Strongest muscle

Largest muscle – gluteus maximus

Three muscle types

MUSCLES

Day 2 Nov 17 and 18

NAMING MUSCLES AND HOW THEY MOVE YOU

Structure of Skeletal Muscle

- Muscle Fiber is a muscle cell
- Fibers up to a foot long

 Strong due to connective tissue that surrounds groups of muscle fibers and becomes tendons

Structure of skeletal muscle

- Muscle many fascicles
- Fascicle many muscle fibers/cells

- BIG TO SMALL
- 1. Muscle
- 2. Fascicles
- 3. Muscle fibers/cells
- 4. Myofibrils
- (Sarcomeres)discuss later

Figure 1: Muscle belly split into various component parts (from Essentials of Strength Training & Conditioning, National Strength & Conditioning Association)

TENDONS

 CONNECT MUSCLE TO **BONE**

 THE (FASCICLE) MEMBRANE AROUND THE **BUNDLES OF MUSCLE** FIBERS/CELLS COME TOGETHER TO FORM **TENDONS** Musculo-

complex

The real thing – a bit gross

HOW MUSCLES CONNECT TO BONES

- All muscles connect to bones at a minimum of TWO places
 - 1. Point of origin
 - 2. Point of insertion

WHEN A MUSCLE CONTRACTS THE ORIGIN GETS CLOSER TO THE INSERTION

Muscles only PULL, they never PUSH

© 2011 Pearson Education, Inc.

Point of Origin and Insertion

Some ways that muscles can move

- Flexion
 - Decreases the angle of the joint
- Abduction
 - Away from the midline

- Extension
 - Increases the angle of the joint
- Adduction
 - Towards the body

- Rotation
 - In a circular motion

Extension and Flexion

aBduction and aDduction

Rotation

MUSCLES

Day 3 NOV 19 AND 20

No Notes (Finish posters, steroid article)

MUSCLES

Day 4 Nov 23 and 24

Muscles at the cellular level

Structure of skeletal muscle

- Muscle many fascicles
- Fascicle many muscle fibers/cells
- Muscle fibers/cells– many myofibrils
- Myofibrils many sarcomeres

- BIG TO SMALL
- 1. Muscle
- 2. Fascicles
- 3. Muscle fibers/cells
- 4. Myofibrils
- Sarcomeres

Figure 1: Muscle belly split into various component parts (from Essentials of Strength Training & Conditioning, National Strength & Conditioning Association)

Inside a SINGLE muscle fiber/cell

Histology

How contraction occurs

- Myofibrils
 - The dark and light bands of the myofibrils move together when a skeletal muscle contracts.

 REMEMBER! Muscles always pull, never push

SLIDING FILAMENT THEORY

THE RED
 PROTEINS GRAB
 THE BLUE
 PROTEINS AND
 PULL THEM
 TOGETHER.

 WHOLE MUSCLE GETS SHORTER

The Sliding Filament Model of Muscle Contraction

IN SUMMARY

- 1. Muscles are made of many muscle fibers/cells
- 2. Inside each muscle cell are myofibrils
- The myofibrils are striated (striped) with light and dark bands
- 4. One set of light and dark bands is a sarcomere
- 5. When the proteins in the bands pull on each other each sarcomere gets shorter.
- 6. When hundreds of sarcomeres in a myofibril get shorter, the whole muscle gets shorter.
- 7. The muscle pulls on the bone and you move

MUSCLES

Day 5 Dec 1 and 2

How nerves move muscles

IN SUMMARY

- 1. Muscles are made of many muscle fibers/cells
- 2. Inside each muscle cell are myofibrils
- The myofibrils are striated (striped) with light and dark bands
- 4. One set of light and dark bands is a sarcomere
- 5. When the proteins in the bands pull on each other each sarcomere gets shorter.
- 6. When hundreds of sarcomeres in a myofibril get shorter, the whole muscle gets shorter.
- 7. The muscle pulls on the bone and you move

What causes muscles to move?

- You think (or instinctively just do it) I want to move a muscle
- Your brain sends a signal to the muscle
- The muscle responds to that signal by contracting
- You move

• But how does that signal work?

Spinal cord to muscle

- 1. A nerve in the spinal cord sends a message to a bunch of muscle fibers (this is a motor unit)
- 2. Where the nerve reaches the muscle is called the neuromuscular junction.

Motor Unit

The Motor Unit

Motor Unit - examples

- Single motor neuron & muscle fibers it stimulates
- Eye muscles 1:1 muscle fiber/nerve ratio
- Hamstrings 300:1 muscle fiber/nerve ratio

Neuromuscular Junction

The Neuromuscular Junction

Site where motor neuron meets the muscle fiber/cell

- A chemical signal is released by the neuron. (neurotransmitter/ acetylcholine)
- 2. The muscle receives this signal, causing the muscle to contract.

MUSCLES

Day 6 Dec 3 and 4

Exercise, Oxygen Debt and Fatigue

A few random things

 A muscle fiber/cell contraction is all or nothing.

 A stronger contraction is caused by using more muscle fibers/cells

Hypertrophy and Hyperplasia

Arnold Schwarzenegger

 Increase in size of each muscle fiber/cell

Bruce Lee

 Increase in number of muscle fibers/cells

Muscle Fatigue

- Fatigue means tired
 - Muscle fatigue is when a muscle won't contract even though a nerve is telling it to
 - Not enough oxygen is main factor

 Not enough oxygen means your body has trouble making ATP

Making ATP

Aerobic respiration

Requires Oxygen

- Makes a LOT of ATP per glucose
- Better way to power muscles

Anaerobic respiration

- Doesn't require oxygen
- Makes less ATP for every glucose.
- Produces Lactic Acid (muscle burn)

Necessary with low Oxygen

MUSCLES

Day 7 Dec 7 and 8

Case study about muscle fatigue and disease

slides I'm not using

Types of Muscle Contraction

- Isometric
 - Muscle exerts force without changing length
 - Pulling against immovable object
 - Postural muscles
- Isotonic (dynamic)
 - Concentric
 - Muscle shortens during force production
 - Eccentric
 - Muscle produces force but length increases

Age-Related Changes in Skeletal Muscle

- Aging is associated with a loss of muscle mass
 - Rate increases after 50 years of age
- Regular exercise training can improve strength and endurance
 - Cannot completely eliminate the age-related loss in muscle mass

Alteration of Fiber Type by Training

- Endurance and resistance training
 - Cannot change fast fibers to slow fibers
 - Can result in shift how efficiently they use oxygen

Force Regulation in Muscle

- Types and number of motor units recruited
 - More motor units = greater force
 - Fast motor units = greater force

Fiber Types and Performance

- Power athletes
 - Sprinters
 - Possess high percentage of fast fibers
- Endurance athletes
 - Distance runners
 - Have high percentage of slow fibers
- Others
 - Weight lifters and non-athletes
 - Have about 50% slow and 50% fast fibers

The Neuromuscular Junction

- Site where motor neuron meets the muscle fiber
 - Separated by gap called the neuromuscular gap
- Acetylcholine is released from the motor neuron
 - Causes depolarization (electrical change) of the muscle fiber
 - Runs down the sarcolemma almost instantaneous because it is just one membrane.

Some vocabulary

Muscle – a bunch or bundle of muscle fibers.

- Muscle fiber or muscle cell
 - Multinucleated many nuclei
 - Long and skinny

- Myo and sarco-
 - Prefixes that mean muscle

Structure of Skeletal Muscle

- Further divisions of myofibrils
 - Z-line
 - Actin
 - Myosin
- Within the Muscle fiber
 - Sarcoplasm
 - Sarcoplasmic reticulum
 - Storage sites for calcium
 - Sarcomere

Cross-Bridge Formation in Muscle Contraction

Isotonic and Isometric Contractions

