

NERVOUS SYSTEM

Day one - January 10 and 11

- Introduction
- Organization of the Nervous System
- How Google is Changing your Brain

MAIN FUNCTION

- The nervous system is the master control and communication system of the body
- Mostly, it controls the bodies QUICK responses

ANATOMY Structural Organization

- TWO MAIN PARTS
 - 1. CENTRAL NERVOUS SYSTEM
 - Includes the brain and the spinal cord

ANATOMY Structural Organization

2. PERIPHERAL NS

 Includes all the nerves that extend from your central nervous system to your body and back

FUNCTIONAL ORGANIZATION

SENSORY NERVES

Body to brain

2. INTEGRATION NERVES

process the information

3. MOTOR NERVES

Brain to body

THE THREE NERVES TOGETHER – A reflex arc

Day Two – Jan 12

- Brain Regions
- Coloring
- Histology
- Project time 1

HUMAN BRAIN

TOP VIEW

BACK FRONT

HEMISPHERES

LEFT AND RIGHT

HAVE DIFFERENT FUNCTIONS

- CORPUS CALLOSUM
 - Left and right connect
 - Sends information from left to right

Four major parts of the brain

>CEREBRAL CORTEX

> HIGHER ORDER REASONING

≻CEREBELLUM

> MOTOR CONTROL

>BRAIN STEM

> AUTOMATIC FUNCTIONS

> DIENCEPHALON

CHEMICALREGULATION

THE CEREBRAL CORTEX

- REASONING
- STILL DEVELOPING IN THE TEENAGE BRAIN

- FRONTAL
 - Thinking
- PARIETAL
 - Your place in space
- TEMPORAL
 - Auditory processing
- OCCIPITAL
 - visual

CONVOLUTIONS OR FOLDING

WHY DOES THE BRAIN HAVE THAT FOLDED UP LOOK????

TO INCREASE SURFACE AREA

HUMAN BRAIN HAS MORE FOLDS
 THAN OTHER ANIMALS

The Diencephalon

- MIDDLE of the head
 - Very protected
- TRANSIT CENTER
 - Between brain and body
 - Hormonal
 - Emotional responses
 - Memory

The Brainstem

- Pathway between brain and spinal cord
- Nerves that control basic body
 Cereb
 - functions
 - Breathing
 - Heart rate
 - Blood pressure

Cerebellum

- Located:
 - Under cerebrum
 - Dorsal to pons and medulla
- Controls and maintains:
 - Voluntary muscle movements
 - Posture
 - Coordination
 - Balance

VOCABULARY

- 1. Stimuli
- 2. Central nervous system
- 3. Peripheral nervous system
- 4. Sensory nerves
- Motor nerves
- 6. Cerebral cortex
- 7. Cerebellum
- 8. Diencephalon
- 9. Brain stem

Day three Jan 17 -absent

- Article How we learn
- ▶ TED talk

Day Four January 19

- Course offerings for next year
- Discuss article/TED how we learn
- Notes 3 Neuron structure and function
- Playdoh neurons
- Jigsaw on neurotransmitters

2 TYPES OF NS CELLS

- Nerve cells or Neurons
 - Send electrochemical signals
- Glial Cells or Support Cells
 - DO NOT send signals
 - Helper cells
 - Ex:
 - make ATP/energy
 - Provide insulation
 - Protection/immune functions

THE STAR: NEURONS

- Neuron is the type of nerve cell that sends the signals to the rest of your body
- ▶ It uses electricity and chemicals to do this → electrochemical

Neuron

Neuromuscular junction

Neuron with support cells

STRUCTURE OF A NEURON

- CELL BODY
 - Main cell functions
- NUCLEUS
 - Stores the DNA
- DENDRITES
 - Take in messages
- AXON
 - Sends messages
- AXON TERMINALS
 - Transfers messages to new cell
- MYELIN SHEATH Support Cell
 - insulates

Review of Neuron Structure & Function

DIFFERENT NEURON STRUCTURES**

MULTIPOLAR

- Most neurons are mutlipolar
- They have many dendrites connected to the cell body and many axon terminals at the other end

BIPOLAR

One main dendrite and one axon

UNIPOLAR

 one short branch off the cell body and then an axon only coming off of it

SYNAPSE

- Space between neurons.
- Chemicals (called neurotransmitters) send signal BETWEEN cells

SYNAPSE

- Neurotransmitters are released into GAP
- Receptors (on next cell) respond to them
- NEUROTRANSMITTERS DO NOT GO INTO THE NEXT CELL

What floats across the cleft? NEUROTRANSMITTERS

DOPAMINE

- Motivation
- Arousal
- Hallucinogens are thought to act on dopamine
- ADRENALINE/ EPINIPHRINE
 - Excitatory
 - Mood elevator
- ▶ GLUTAMATE
 - Excitatory

SEROTONIN

- "feel good"
- Effects mood and anxiety
- ACETYLCHOLINE
 - Muscle movement
- GABA
 - Sedation or inhibition
- ENDORPHINS
 - Pain relief, reduce stress, depress functions (lower breathing rate, heart rate

Information flow through neurons

Dendrites Cell body

Collect electrical signals

Integrates incoming signals and generates outgoing signal to axon

Axon

Passes electrical signals to dendrites of another cell or to an effector cell

Figure 45-2b Biological Science, 2/e © 2005 Pearson Prentice Hall, Inc.

WHAT STARTS A MESSAGE?

Your body needs to communicate something

- Stimuli
 - Pain, cold, pressure (remember the skin receptors?)
- Neurotransmitter
 - Continuation of a message
 - Final step of message (EX: tells a muscle to contract)

HOW NEURONS SEND MESSAGES

- Electrical signal within a neuron
 - Called an ACTION POTENTIAL
 - This is the excitability or irritability of the cell

- Chemical signal between neurons
 - NEUROTRANSMITTERS
 - This is the conductivity of the cell

VOCAB

- Dendrite
- Cell body
- Axon
- Axon terminal
- Neurotransmitters chemical signal
- Electrical signal
- Stimuli

Day Five January 23

Neuromuscular junction posters

Day Six January 25

- Notes 4 Reflex arc
- Reaction time activity

REFLEX ARC

THREE STEPS

- 1. Sensory nerve receives stimuli
- 2.Integration occurs in spinal cord
- 3.Motor nerve sends response message to muscle

Reflex arc

- When the body needs to respond ASAP
- Reflex arcs occur without ever sending information to the brain, only to the spinal cord
- There are internal and muscular reflex arcs we will focus on the muscular ones.

Name those parts

VOCABULARY

- Stimuli
- Sensory nerves
- Motor nerves
- Integration
- Reflex arc

Day Seven Jan 27

- Notes 5 Protection
- Long term head injuries article

PROTECTING THE NERVOUS SYSTEM

- Four protections
 - 1. Bone
 - 2. Meninges
 - 3. Cerebral spinal fluid
 - 4. Blood Brain Barrier

Protection 1

- **BONES**
 - Skull
 - Vertebrae

Protection 2

- MENINGES
 - MEMBRANES
 - COVER THE BRAIN AND SPINAL CORD

PROTECTION 3

- Cerebral Spinal Fluid
 - Acts as a cushion
 - Similar to blood plasma

Protection 4

- Blood brain barrier
 - Extra filter that all blood going to the brain passes through
 - Keeps toxins and waste out
 - Keeps bacteria and viruses out
 - Not as good with fat soluble things (some drugs, including alcohol)

Meninges

- Set of three protective layers covering brain and spinal cord
 - Dura mater
 - Outermost layer
 - Arachnoid
 - Middle layer
 - Pia mater
 - Thin, vascular inner layer
 - Attached directly to brain and spinal cord tissue

Dura mater -- outer layer lining skull
Arachnoid (mater) -- contains blood vessels
Subarachnoid space -- filled with CSF
Pia mater -- covers brain

The Spinal Cord

- Extends from medulla oblongata to between 1st and 2nd lumbar vertebrae
- Consists of:
 - Gray matter (made of cell bodies)
 - Central area surrounded by white matter
 - White matter (made of axons)
 - Contains tracts for impulses

CONCUSSIONS

- OCCUR WHEN THE HEAD IS HIT HARD
- CAUSE SWELLING IN THE BRAIN
- SYMPTOMS OF A CONCUSSION
 - CONFUSION
 - BLURRED VISION
 - NAUSEA
 - FLASHING LIGHTS
 - UNEVEN PUPILS

Day Eight

- Project time
- Read teenage brain article

Day Nine

- Article Discussion
- More project time

Slides we aren't using

WHAT CAUSES AN ACTION POTENTIAL?

- STIMULI OR NEUROTRANSMITTERS!!!!!
- These are the chemical signals in the brain
- There are many different types of neurotransmitters and they all have different effects on the brain and body
- Examples include: seratonin, acetylcholine, dopamine we are going to save that story for another day

A few more spots in the brain

- Broca's area language, usually in the left hemisphere, at the junction of all the sensory lobes (parietal, occipital, temporal)
- Language processing happens in the front of the frontal cortex

DRUGS AND THE BRAIN

STIMULANTS

- CAFFEINE, NICOTENE, AMPHETAMINES
- INCREASE DOPAMINE AND ADRENALIN

DEPRESSANTS

- ALCOHOL, BENZODIAZEPINS (AKA VALIUM), SLEEPING PILLS, AND BARBITUATES
- INCREASE OR CHANGE GABA PRODUCTION

OTHER

- MARIUJUANA/THC,
- ALTER ANANDAMIDE PRODUCTION,
 - CEREBELLUM COORDINATION
 - BRAIN STEM SHORT TERM MEMORY

Day 8 January 27 and 28

- Test
- Course offerings next year

ACTION POTENTIAL 1 ***

REST (Not sending a signal)

- Axon is POLARIZED or charged
- Unequal number of + and charges.
 - (++ outside the neuron, -- inside the neuron)

ACTION POTENTIAL 2

DEPOLARIZATION ***

- ++ ions rush into the neuron
- Charges move into axon, this is an impulse

ACTION POTENTIAL 3

REPOLARIZATION

- Charges go back to rest
- Normally happens quickly
- Drugs can change this speed

ACTION POTENTIAL 4

- ENERGY REQUIREMENTS
 - No energy needed for action potential

 Energy (ATP) needed to get cell back to resting potential.

© 2011 Pearson Education, Inc.

WHAT CAUSES AN ACTION POTENTIAL?

- THE NEED TO SEND A MESSAGE
- STIMULI
- NEUROTRANSMITTERS

TYPES OF SUPPORT CELLS

Neuroglia

 Insulate, protect, nourish the nerve cells in the CENTRAL NERVOUS SYSTEM (CNS)

Myelin Sheath

- Insulate and help in speedy transmission of PERIPHERAL NERVOUS SYSTEM (PNS)
- Made by Schwann cells